A Copulas-Based Approach to Modeling Dependence in Decision Trees
نویسندگان
چکیده
This paper presents a general framework based on copulas for modeling dependent multivariate uncertainties through the use of a decision tree. The proposed dependent decision tree model allows multiple dependent uncertainties with arbitrary marginal distributions to be represented in a decision tree with a sequence of conditional probability distributions. This general framework could be naturally applied in decision analysis and real options valuations, as well as in more general applications of dependent probability trees. While this approach to modeling dependencies can be based on several popular copula families as we illustrate, we focus on the use of the normal copula and present an efficient computational method for multivariate decision and risk analysis that can be standardized for convenient application.
منابع مشابه
Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملCorrelations and Copulas for Decision and Risk Analysis
The construction of a probabilistic model is a key step in most decision and risk analyses. Typically this is done by defining a joint distribution in terms of marginal and conditional distributions for the model’s random variables. We describe an alternative approach that uses a copula to construct joint distributions and pairwise correlations to incorporate dependence among the variables. The...
متن کاملOn Generators in Archimedean Copulas
This study after reviewing construction methods of generators in Archimedean copulas (AC), proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.
متن کاملPreface to special issue on high-dimensional dependence and copulas
One of the biggest advances in recent years for high-dimensional copula models and applications has been the development of the vine pair-copula construction that covers continuous and discrete variables, and its extensions to include latent variables. Software has been made available in the VineCopula R package and the package that is companion to the book by Joe [6]. This special issue of the...
متن کاملGaussian Process Vine Copulas for Multivariate Dependence
Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 60 شماره
صفحات -
تاریخ انتشار 2012